The Impact of the Decline in Lake Urmia’s Water Level on Groundwater Resources: Environmental Consequences and Planning

Document Type : Research Paper

Authors

1 Department of Water Engineering, Faculty of Agriculture, Urmia University, Urmia, Iran

2 Department of physical Geography, Faculty of Geography, University of Tehran, Tehran, Iran

10.22059/jtcp.2025.397189.670510

Abstract

This study examines the relationship between groundwater fluctuations and the desiccation of Lake Urmia from 2001 to 2016. The results indicate that the lake's water level has declined at a rate of 0.25 meters per year, with the Sufian-Shabestar, Kahriz, and Miandoab aquifers experiencing the most significant changes (coefficient of variation: 24–79%). Analysis of data from 721 piezometric wells using Inverse Distance Weighting (IDW) interpolation in GIS revealed a reversal in groundwater flow direction in the Salmas, Tasuj, and Sufian-Shabestar aquifers, now trending away from the lake. A Vulnerability assessment using the MOVE model identified the Miandoab aquifer as the most vulnerable (weight: 0.63), while the Tabriz and Urmia aquifers were the least vulnerable (weight: 0.45). Key contributing factors include excessive extraction from deep wells, land-use conversion to orchards, and economic reliance on agriculture. In contrast, industrial and tourism development positively mitigated vulnerability. The study emphasizes that water resource management in the Lake Urmia basin must be tailored to the hydrological and socio-economic characteristics of each aquifer, prioritizing the regulation of high-risk aquifers such as Salmas and Sufian-Shabestar. These findings can significantly inform policies for Lake Urmia’s restoration and sustainable groundwater management.

Keywords

Main Subjects


Abbaspour, M., Javid, A. H., Mirbagheri, S. A., Ahmadi Givi, F., & Moghimi P. (2012). Investigation of lake drying attributed to climate change. International Journal of Environmental Science and Technology, 9(2), 257-266. doi: 10.1007/S13762-012-0031-0.
AghaKouchak, A., Feldman, D., Hoerling, M. et al. (2015). Water and climate: Recognize anthropogenic drought. Nature, 524, 409–411. https://doi.org/10.1038/524409a.
Arif, A., Tri, E., Suswatiningsih (2022). Irigasi Air Tanah Mendukung Pertanaman Kacang Tanah, Jagung dan Kedelai di Lahan Kering pada Musim Kemarau. AgriHealth, 3(2), 124-124. doi: 10.20961/agrihealth. v3i2.62537.
Berahman, S. (2022). Saving Lake Urmia: The Impact of Water Heritage on People’s Lives. 1(2), 132-141. doi: 10.58981/bluepapers.2022.2.13.
Birkmann, J., Buckle, P., Jaeger, J., Pelling, M., Setiadi, N., Garschagen, M., Fernando, N., & Kropp, J. (2010). Extreme events and disasters: a window of opportunity for change? Analysis of changes, formal and informal responses after mega-disasters. Nat Hazards, 55(3), 637–655.
Bücker, M., Flores Orozco, A., Gallistl, J., Steiner, M., Aigner, L., Hoppenbrock, J., Glebe, R., Morales Barrera, W., Pita de la Paz, C., García García, C. E., Razo Pérez, J. A., Buckel, J., Hördt, A., Schwalb, A., & Pérez, L. (2021). Integrated land and water-borne geophysical surveys shed light on the sudden drying of large karst lakes in southern Mexico. Solid Earth, 12(2), 439-461. doi: 10.5194/SE-12-439-2021.
Dinpajouh, Y., Fakhrifard, A., Hassanpour Aghdam, M. A., & Beheshti Vaighan, V. (2014). Analysis of groundwater quality changes trend in Shabestar-Soofian plain [In Persian]. Civilica. https://civilica.com/doc/970704
Dziubanski, D. & Franz, K. (2023). Projecting hydrologic change under land use and climate scenarios in an agricultural watershed using agent-based modeling. Frontiers in Water, 5. 1020080. 10.3389/frwa.2023.1020080.
Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., ... & Snyder, P. K. (2005). Global consequences of land use. Science, 309(5734), 570-574. DOI: 10.1126/science.1111772.
Ge, H. & Zhu, L. (2021). Analysis of the water level drop in the tail zone of the largest tributary of Poyang Lake, China. Arab J Geosci, 14, 1284 . https://doi.org/10.1007/s12517-021-07654-7.
Guo Yanyou, L., Xijun, W., & Xinghua, Ch. Y. (2022). Dry-Season Water Level Shift Induced by Channel Change of the River–Lake System in China’s Largest Freshwater Lake, Poyang Lake. Wetlands, 42(8). doi: 10.1007/s13157-022-01615-w.
Hagenlocher, M., Renaud, FG., Haas, S., & Sebesvari, Z. )2018(. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards. Sci Total Environ, 2018 Aug 1, 631-632:71-80. doi: 10.1016/j.scitotenv.2018.03.013. Epub Mar 7. PMID: 29524904.
Haghi, M., Diznabi, S. H., Karaboz, I., & Ersoy Omeroglu, E. (2023). Arsenic pollution and arsenic-resistant bacteria of drying Urmia Salt Lake. Frontiers in Environmental Science, 11. doi: 10.3389/fenvs.2023.1195643.
IWRM Co. (2019). Iran’sWater Resources Management Company. https://www.wrm.ir.
Khorrami, B., Ali, S., Sahin, O. G., & Gunduz, O. (2023). Model-coupled GRACE-based analysis of hydrological dynamics of drying Lake Urmia and its basin. Hydrological Processes, 37(5), e14893. https://doi.org/10.1002/hyp.14893.
Kumar, S., Mishra, A., & Singh, U. K. (2023). Assessment of Land Cover Changes and Climate Variability Effects on Catchment Hydrology Using a Physically Distributed Model. Sustainability, 15(13), 10304. https://doi.org/10.3390/su151310304.
Madani, K. (2014). Water management in Iran: what is causing the looming crisis?. J Environ Stud Sci, 4, 315–328 (2014). https://doi.org/10.1007/s13412-014-0182-z.
May, S.Y., Khaing, K.K., & Ward, J.S.T. (2022). The role of groundwater in rural water supply. CRC Press.
Moravej, M., Renouf, M. A., Lam, K. L., Kenway, S. J., & Urich, C. (2021). Site-scale Urban Water Mass Balance Assessment (SUWMBA) to quantify water performance of urban design-technology-environment configurations. Water Research, Vol. 188, 2021, 116477, ISSN 0043-1354. https://doi.org/10.1016/j.watres.2020.116477.
Mosha, D.B., Gudaga, J.L., Gama, D., & Kashaigili, J.J. (2022). Valuing groundwater use. 275-294. doi: 10.1201/9781003024101-15.
Pahl-Wostl, C. (2007). Transitions Towards Adaptive Management of Water Facing Climate and Global Change. Water Resources Management, 21, 49-62. 10.1007/s11269-006-9040-4.
Roshan, G., Masoompour, J., Samakosh, J. A., & Orosa, J.. (2016). The impacts of drying of Lake Urmia on changes of degree day index of the surrounding cities by meteorological modelling. Environmental Earth Sciences, 75(20), 1-14. doi: 10.1007/S12665-016-6200-6.
Sadeghi-Bazargani, H., Allahverdipour, H., Asghari Jafarabadi, M., & Azami-Aghdash, S. (2019). Lakes Drying and Their Adverse Effects on Human Health: A Systematic Review. Iran J Public Health. 2019 Feb, 48(2), 227-237. PMID: 31205876; PMCID: PMC6556201.
Shengchun, X., Xiaomei, P., & Quanyan, T. (2016). Climatic and human drivers of recent lake-level change in East Juyan Lake, China. Regional Environmental Change, 16(4), 1063-1073. doi: 10.1007/S10113-015-0822-1.
Sukhsehaj Kaur, Ch. S. (2023). Assessing impacts of Spatio-temporal changes in land use and land cover on the hydrologic response of an Indian Catchment. doi: 10.5194/egusphere-egu23-14603.
Tussupova, K., Anchita, Hjorth, P., & Moravej, M. (2020). Drying Lakes: A Review on the Applied Restoration Strategies and Health Conditions in Contiguous Areas. Water, 12(3), 749. https://doi.org/10.3390/w12030749.