Developing Scenarios of Geographic Interaction in Critical Infrastructure During Urban Hazards in Ahvaz

Document Type : Research Paper

Authors

1 Associate Professor, Department of Geography and Urban Planning, Faculty of Literature and Humanities, Shahid Chamran University of Ahvaz, Ahvaz, Iran

2 Professor, Department of Geography and Urban Planning, Faculty of Literature and Humanities, Shahid Chamran University of Ahvaz, Ahvaz, Iran

3 PhD Student in Geography and Urban Planning, Faculty of Literature and Humanities, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Abstract

In recent years, the infrastructure systems have been mostly failed due to the increase in natural or manmade disasters as well as the internal and external dependencies among system components. The mutual infrastructure dependencies might cause more vulnerability and bring about cascading failures. The main objective of this study was to develop scenarios of geographic interaction in critical infrastructure during urban hazards in Ahvaz. The study was developmental-applied in terms of purpose, while in terms of methodology, it was descriptive-analytical done based on field study and document analysis. The study indices were extracted and related via combining the results of expert opinion and existing records. To develop scenarios, after identifying the variables, the key factors affecting each topic were specified, and then various conditions were defined for each variable. The identification of driving forces in Ahvaz infrastructures interaction was done using models such as “cross-impact analysis” using MICMAC software. In order to identify, analyze, and adopt selected scenarios, cross-impact balance analysis was run in ScenarioWizard software. The inspection of scenario screen in ScenarioWizard software showed that from among 80 existing settings of critical infrastructure spatial interaction drivers, 26 cases (32.5 percent) were in statistic form and 25 cases (3.125 percent) in critical conditions.

Keywords

Main Subjects


امان‏پور، سعید؛ علی‌رضا پرویزیان (1399). «مکان‌یابی ‏پناهگاه‏‏های چندمنظورۀ شهری مبتنی بر اصول پدافند غیرعامل (مطالعۀ موردی: منطقۀ 1 کلان‌شهر اهواز)»، آمایش سرزمین، 12(2)، ص 385 ـ 406.   10.22059/jtcp.2020.305735.670133
عبدالهی، مجید؛ بشیر حسینی؛ بهمن احمدی‌توانا (1393). «ارائة مدل تحلیل اندرکنشی در مدیریت ریسک شهری جهت ارزیابی میزان حساسیت زیرساخت‏ها و پهنه‏های شهری»، دومین کنفرانس ملی مدیریت بحران و HSE در شریان‌های حیاتی، صنایع، و مدیریت شهری، تهران. https://civilica.com/doc/362974
محمدی ده‌چشمه، مصطفی؛ هادی علی‌زاده؛ داود عباسی گوجانی (1398). «تحلیل فضایی شاخص‌های تبیین‌کنندۀ تاب‌آوری در زیرساخت شریانی حمل‌ونقل (مطالعۀ موردی: کلان‌شهر اهواز)»، پژوهش‌های جغرافیای برنامه‌ریزی شهری، 7(2)، ص 375 ـ 391. doi: 10.22059/jurbangeo.2019.273727.1042
نکوئی، محمدعلی؛ ساره رودباری؛ روح‌الله طاهرخانی (1395). «چارچوب تحلیل آسیب‌پذیری زیرساخت‌ها با استفاده از شبکة گراف»، هشتمین کنفرانس بین‌المللی مدیریت جامع بحران، تهران. https://civilica.com/doc/560042
نورالهی، حانیه؛ عاطفه سلیمانی؛ اکرم برزگر؛ علی علی‌دوستی (1392). «ارزیابی میزان حساسیت دارایی‌ها و پهنه‌های شهری با استفاده از تحلیل اندرکنشی با رویکرد برنامه‌ریزی شهری»، مدیریت بحران، 2(2)، ص 33 ـ 41.
References
Abdulahi, M., Hosseini, B., & Tawana-Ahmadi, B. (2013). “Presenting an interactive analysis model in urban risk management to assess the sensitivity of infrastructure and urban areas”, the second national conference on crisis management and HSE in vital arteries, industries and urban management, Tehran. https://civilica.com/doc/362974. (in Persian)
Amanpour, S. & Parvizian, A. (2020). “Locating Multi-Purpose Urban Shelters Based on the Principles of Passive Defense (The Case Study of the District One of Ahvaz Metropolis)”, Town and Country Planning, 12(2), pp. 385-406. doi: 10.22059/jtcp.2020.305735.670133. (in Persian)
Aradau, C. (2010). “Security That Matters: Critical Infrastructure and Objects of Protection”, Security Dialogue, 41(5), pp. 491–514. doi:10.1177/0967010610382687
Cantelmi, R., Di Gravio, G., & Patriarca, R. (2021). “Reviewing qualitative research approaches in the context of critical infrastructure resilience”, Environ Syst Decis 41, pp. 341–376. https://doi.org/10.1007/s10669-020-09795-8
Chen, C., Reniers, G., & Khakzad, N. (2019). Integrating safety and security resources to protect chemical industrial parks from man-made domino effects: A dynamic graph approach, Reliability Engineering & System Safety.
Enrico, C., Massimiliano De, A., Ottaviob, G., & Paolo, T. (2011). “Risk analysis of underground infrastructures in urban areas”, Reliability Engineering & System Safety, Vol. 96, Issue 1, pp. 139-148.
Haggag, M., Ezzeldin, M., El-Dakhakhni, W., & Hassini, E. (2020). “Resilient cities critical infrastructure interdependence: a meta-research”, Sustainable and Resilient Infrastructure, pp. 1–22. doi:10.1080/23789689.2020.1795571
Magoua, J. J., Wang, F., & Li, N. (2022). “High level architecture-based framework for modeling interdependent critical infrastructure systems”, Simulation Modelling Practice and Theory, 118, pp. 102-129.
Mohammadi Dehcheshmeh, M., Alizadeh, H., & Abasi Gojani, D. (2019). “The Spatial Analysis of the Indicators Explaining Resilience in the Transportation Infrastructure (Case Study: Ahwaz Metropolis, Iran)”, Geographical Urban Planning Research (GUPR), 7(2), pp. 375-391. doi: 10.22059/jurbangeo.2019.273727.1042. (in Persian)
Mohammadi Dehcheshmeh, M. & Ghaedi, S. (2020). “Climate Change and Ecological Migration: A Study of Villages in the Province of Khuzestan, Iran”, Environmental Research, Engineering and Management, 76(1), pp. 6-19.
Nakoi, M.A., Rudbari, S., & Taherkhani, R. (2015). “Infrastructure vulnerability analysis framework using graph network”, 8th International Comprehensive Crisis Management Conference, Tehran. https://civilica.com/doc/560042 (in Persian)
Nourollahi, H., Soleimani, A., Barzegar, A., & Alidusti, A. (2014). “Critical assement of assests and areas in the city using interdependency analysis – An urbun planning approach”, Emergency Management, 2(2), pp. 33-41.
Nuha, E., Ch, E., & Virginia, M. (2018). “Building Urban Resilience for Disaster Risk Management and Disaster Risk Reduction”, Procedia Engineering, 212(2018), pp. 575-582.
Robert, B. & Morabito, L. (2010). “An approach to identifying geographic interdependencies among critical infrastructures”, International Journal of Critical Infrastructures, 6(1), pp. 17–30. doi:10.1504/ijcis.2010.029574.
Singh, A. N., Gupta, M.P., & Ojha, A. (2014). “Identifying critical infrastructure sectors and their dependencies: An Indian scenario”, International Journal of Critical Infrastructure Protection, 7(2), pp. 71–85. doi:10.1016/j.ijcip.2014.04.003.
Sun, W., Bocchini, P., & Davison, B. D. (2022). “Overview of Interdependency Models of Critical Infrastructure for Resilience Assessment”, Natural Hazards Review, 23(1), pp. 21-38.
Wang, L., Xue, X., Wang, Z., & Zhang, L. (2018). “A Unified Assessment Approach for Urban Infrastructure Sustainability and Resilience”, Advances in Civil Engineering, pp. 1–19.
Xiao, Y., Zhao, X., Wu, Y., Chen, Z., Gong, H., Zhu, L., & Liu, Y. (2022). “Seismic resilience assessment of urban interdependent lifeline networks”, Reliability Engineering & System Safety, 218, pp. 108-116.
Yang, Z., Clemente, M. F., Laffréchine, K., Heinzlef, C., Serre, D., & Barroca, B. (2022). “Resilience of Social-Infrastructural Systems: Functional Interdependencies Analysis”, Sustainability, 14(2), pp. 606-616.
Zimmerman, R., Zhu, Q., & Dimitri, C. (2016). “Promoting resilience for food, energy, and water interdependencies”, Journal of Environmental Studies and Sciences, 6(1), pp. 50–61. doi:10.1007/s13412-016-0362-0
 
Volume 14, Issue 2
Autumn & Winter
October 2022
Pages 523-542
  • Receive Date: 31 July 2022
  • Revise Date: 11 October 2022
  • Accept Date: 11 October 2022