Al Momin, K., Barua, S., Hamim, O. F., & Roy, S. (2022). Modeling The Behavior In Choosing The Travel Mode For Long-Distance Travel Using Supervised Machine Learning Algorithms. Komunikácie, 24(4 :A187-A197).
Bantis T. & Haworth, J. (2017). Who you are is how you travel: A framework for transportation mode detection using individual and environmental characteristics. Transportation Research Part C: Emerging Technologies, Vol. 80, 286-309.
Bohte, W. & Maat, K. (2009). Deriving and validating trip purposes and travel modes for multi-day GPS-based travel surveys: A large-scale application in the Netherlands. Transportation Research Part C: Emerging Technologies, Vol. 17, No. 3, 285-297.
Bolbol, A., Cheng, T., Tsapakis, I., & Haworth, J. (2012). Inferring hybrid transportation modes from sparse GPS data using a moving window SVM classification. Computers, Environment and Urban Systems, Vol. 36, No. 6, 526-537.
Byon, Y.-J. & Liang, S. (2014). Real-time transportation mode detection using smartphones and artificial neural networks: Performance comparisons between smartphones and conventional global positioning system sensors. Journal of Intelligent Transportation Systems, Vol. 18, No. 3, 264-272.
Chen, T. & Guestrin, C. (2016). "Xgboost: A scalable tree boosting system" in Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 785-794.
Dabiri, S. & Heaslip, K. (2018). Inferring transportation modes from GPS trajectories using a convolutional neural network. Transportation research part C: emerging technologies, Vol. 86, 360-371.
Dabiri, S., Lu, C.-T., Heaslip, K., & Reddy, C. K. (2019). Semi-supervised deep learning approach for transportation mode identification using GPS trajectory data. IEEE Transactions on Knowledge and Data Engineering, Vol. 32, No. 5, 1010-1023.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
Friedrich, B., Lübbe, C., & Hein, A. (2020). Analyzing the importance of sensors for mode of transportation classification. Sensors, Vol. 21, No. 1, 176.
Geolife Dataset. https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide (accessed).
Gong, H., Chen, C., Bialostozky, E., & Lawson, C. T. (2012). A GPS/GIS method for travel mode detection in New York City. Computers, Environment and Urban Systems, Vol. 36, No. 2, 131-139.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques Third Edition [M]. The Morgan Kaufmann Series in Data Management Systems, Vol. 5, No. 4, 364-371.
Hasan, R. A., Irshaid, H., Alhomaidat, F., Lee, S., & Oh, J.-S. (2022). Transportation mode detection by using smartphones and smartwatches with machine learning. KSCE Journal of Civil Engineering, 26(8), 3578-3589.
Huang, Z., Wang, P., & Liu, Y. (2020). Statistical characteristics and transportation mode identification of individual trajectories. International Journal of Modern Physics B, Vol. 34, No. 10, 2050092.
Jahangiri, A. & Rakha, H. A. (2015). Applying machine learning techniques to transportation mode recognition using mobile phone sensor data. IEEE transactions on intelligent transportation systems, Vol. 16, No. 5, 2406-2417.
Kashifi, M. T., Jamal, A., Kashefi, M. S., Almoshaogeh, M., & Rahman, S. M. (2022). Predicting the travel mode choice with interpretable machine learning techniques: A comparative study. Travel Behaviour and Society, 29, 279-296.
Li, J., Pei, X., Wang, X., Yao, D., Zhang, Y., & Yue, Y. (2021). Transportation mode identification with GPS trajectory data and GIS information. Tsinghua Science and Technology, Vol. 26, No. 4, 403-416.
Li, L., Zhu, J., Zhang, H., Tan, H., Du, B., & Ran, B. (2020). Coupled application of generative adversarial networks and conventional neural networks for travel mode detection using GPS data. Transportation Research Part A: Policy and Practice, Vol. 136, 282-292.
Martín-Baos, J. Á., López-Gómez, J. A., Rodriguez-Benitez, L., Hillel, T., & García-Ródenas, R. (2023). A prediction and behavioural analysis of machine learning methods for modelling travel mode choice. arXiv preprint arXiv: 2301.04404.
Nawaz, A. et al. (2020). Mode Inference using enhanced Segmentation and Pre-processing on raw Global Positioning System data. Measurement and Control, Vol. 53, No. 7-8, 1144-1158.
Nawaz, A., Zhiqiu, H., Senzhang, W., Hussain, Y., Khan, I., & Khan, Z. (2020). Convolutional LSTM based transportation mode learning from raw GPS trajectories. IET Intelligent Transport Systems, Vol. 14, No. 6, 570-577.
Noble, W. S. (2006). What is a support vector machine?. Nature biotechnology, Vol. 24, No. 12, 1565-1567.
Sasaki, Y. (2007). The truth of the F-measure. Teach tutor mater, Vol. 1, No. 5, 1-5.
Sauerländer-Biebl, A., Brockfeld, E., Suske, D., & Melde, E. (2017). Evaluation of a transport mode detection using fuzzy rules. Transportation research procedia, Vol. 25, 591-602.
Schlebusch, C. M. & Jakobsson, M. (2018).Tales of human migration, admixture, and selection in Africa. Annual Review of Genomics and Human Genetics, Vol. 19, 405-428.
Song, X., Kanasugi, H., & Shibasaki, R. (2016). "Deeptransport: Prediction and simulation of human mobility and transportation mode at a citywide level" in Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, 2618-2624.
Sun, Y., Dong, Y. D., Waygood, E. O., Naseri, H., Jiang, Y., & Chen, Y. (2023). Machine-learning approaches to identify travel modes using smartphone-assisted survey and map application programming interface. Transportation Research Record, 2677(2), 385-400.
Vapnik, V. N. (1995). The nature of statistical learning. Theory.
Wang, B., Wang, Y., Qin, K., & Xia, Q. (2018). "Detecting transportation modes based on LightGBM classifier from GPS trajectory data" in 2018 26th International Conference on Geoinformatics, IEEE, 1-7.
Xiao, Z., Wang, Y., Fu, K., & Wu, F. (2017). Identifying different transportation modes from trajectory data using tree-based ensemble classifiers. ISPRS International Journal of Geo-Information, Vol. 6, No. 2, 57.
Yazdizadeh, A., Patterson, Z., & Farooq, B. (2019). An automated approach from GPS traces to complete trip information. International Journal of Transportation Science and Technology, Vol. 8, No. 1, 82-100.