Analysis of hydrological drought and flow reduction zoning of Habalehrood watershed

Document Type : Research Paper

Authors

1 International Desert Research Center, University of Tehran, Karaj, Iran

2 Deputy of Research and Technology, University of Tehran, Tehran, Iran

10.22059/jtcp.2024.378499.670458

Abstract

DuringOver the last few decades, the rising demand for water due to the increase in population and expansion of human activities, has caused this vital resource being used sub optimally and facing double pressures. This problem is more acute especially in the years when we are facing the phenomena of climate change and drought. Furthermore, the amount of running water has reached its minimum leading to environmental consequences such as increasing pollution and decreasing the quality of water resources. Therefore, calculating the minimum flow in the river and knowing its characteristics in various hydrological studies, including water quality management, determining the minimum flow required for electricity generation, designing irrigation systems, and evaluating the effect of long-term drought periods are significantly important for aquatic ecosystems. The present study investigated the hydrological drought and the periods of lack of flow, using the threshold method (Q70, Q80, Q90 and the middle), in the Hablehrood watershed, and the results were used to identify dry periods and zoning this phenomenon.. The results of the surveys showed that the largest amount of deficit and the largest continuation of hydrological drought in the threshold limit in most of the stations follow an upward trend. Finally, based on the final zoning map, it was revealed that the central parts of the basin have experienced more severe drought. The results of this research are of special importance in the water resources management of this watershed, as one of the main sources of water resources of the city and Garmsar Plain.

Keywords

Main Subjects


اسلامیان، سعید.؛ قاسمی، محسن. و ﺳﻠﻄﺎنی‌ ﮔﺮﺩﻓﺮﺍﻣﺮﺯی، سمیه (1391). ﻣﺤﺎﺳﺒﻪ ﻭ ﻧﺎﺣﻴﻪ‌ﺑﻨﺪﻱ ﺷﺎﺧﺺ‏های ﺟﺮﻳﺎﻥ ﮐﻢ ﻭ ﺗﻌﻴﻴﻦ دوره‏های خشک‏سالی ﻫﻴﺪﺭﻭﻟﻮﮊﻳک (ﻣﻄﺎلعة ﻣﻮﺭﺩﻱ: ﺣﻮﺿﺔ ﺁﺑﺨﻴﺰ ﮐﺮﺧﻪ). ﻋﻠﻮﻡ ﻭ ﻓﻨﻮﻥ ﻛﺸﺎﻭﺭﺯﻱ ﻭ ﻣﻨﺎﺑﻊ طبیعی، ﻋﻠﻮﻡ ﺁﺏ ﻭ ﺧﺎﻙ، 59، 1 ـ 13.
بایزیدی، م. و ثقفیان، ب. (1390). تجزیه‌وتحلیل منطقه‏ای خشک‏سالی جریان رودخانه در مناطق جنوب غرب کشور. علوم و مهندسی آبخیزداری ایران، 14، 37 ـ 52.
بایزیدی، مطلب؛ ثقفیان، بهرام؛ صدقی، حسین و کاوه، فریدون (1388). تحلیل خشک‏سالی هیدرولوژیکی حوضة کارون بر اساس داده‏های روزانه. پژوهش‏های آبخیزداری، 86، 52 ـ 63.
جهان‌بخش، سعید؛ ساری‌صراف، بهروز؛ غفوری روزبهانی، عبدالمحمد و رحیمی بندرآبادی، سیما (1395). تجزیه‌وتحلیل زمانی و مکانی جریان حداقل در حوزة آبخیز کرخه. مهندسی و مدیریت آبخیز، 8(1)، 55 ـ 67.
علیشاهی چگنی، منیر؛ پایمزد، شهلا و رحیمی، مهدی (1402). تحلیل دینامیکی خشک‌سالی هیدرولوژیک با استفاده از روش حدآستانة ثابت و نرم‌افزار Vensim. محیط زیست و مهندسی آب، 9(4)، 467 ـ 484.
قربانی، مریم؛ مزین، ملیحه و زارعی، حیدر (1398). بررسی خشک‌سالی هیدرولوژیک رودخانة ارمند با استفاده از تجزیه‌وتحلیل جریان‌های کم‌آبی. پژوهش‌های حفاظت آب و خاک، 26(3)، 72-63.
ولی، عباس‌علی و محرابی، مهوش (1398). تحلیل فراوانی خشک‌سالی هیدرولوژیک حوضة سد درودزن بر اساس شاخص جریان رودخانه‌ای. هیدروژئومورفولوژی، 6(19)، 125 ـ 143.
Ahmadi, B. & Moradkhani, H. (2019). Revisiting hydrological drought propagation and recovery considering water quantity and quality. Hydrological Processes, 33(10), 1492-1505.
Alishahi Chegeni, M., Paimozd, S., & Rahimi, M. (2023). Dynamic Analysis of Hydrological Drought using Constant Threshold Method and Vensim Software. Environment and Water Engineering, 9(4), 467-484. doi: 10.22034/ewe.2023.376058.1832. (in Persian)
Amini, H., EsmaliOuri, A., Mostafazadeh, R., Sharari, M., & Zabihi, M. (2023). Determining Hydrological Drought Characteristics Using Severity-Duration-Frequency Curves and Flow Thresholds Levels in Ardabil Province Rivers. Journal of Water and Soil Resources Conservation, 13(1), 53-67.
Bayazidi, M., Saghafian, B., Sedghi, H., & Kaveh, F. (2010). Analysis of hydrological drought in Karoon river basin by daily discharge data. Watershed Management Research Journal, 86(2), 52-63. (in Persian)
Byzedi, M. & Saghafian, B. (2011). Regional analysis of stream flow drought in southwestern of Iran. Watershed Engineering and Management, 5(14), 37-52. (in Persian)
Cavus, Y. & Aksoy, H. (2020). Critical drought severity/intensity-duration-frequency curves based on precipitation deficit. Journal of hydrology, 584, 124312.
Ding, Y. B., Xu, J. T., Wang, X. W., Cai, H. J., Zhou, Z. Q., Sun, Y. N., & Shi, H. Y. (2021). Propagation of meteorological to hydrological drought for different climate regions in China. Journal of Environmental Management, 283, 111980. https://doi.org/10.1016/j.jenvman.2021.111980
Eslamian, S. S., Ghasemi, M., & Gerdefaramarzi, S. S. (2012). Computation and regionalization of low flow indices and determination of hydrological drought durations in Karkhe Watershed, JWSS-Isfahan University of Technology, 16(59), 1-14 (in Persian)
Fernández, F. J., Vásquez-Lavín, F., Ponce, R. D., Garreaud, R., Hernández, F., Link, O. & Hanemann, M. (2023). The economics impacts of long-run droughts: Challenges, gaps, and way forward. Journal of Environmental Management, 344, 118726.
Ghorbani, M., Mozayyan, M., & Zarei, H. (2019). Hydrological drought investigation of Armand River using low flows analysis. Journal of Water and Soil Conservation, 26(3), 247-263.
Ghorbani, M., Mozayyan, M., & Zarei, H. (2019). Hydrological Drought Investigation of Armand River Using Low Flows Analysis, Journal of Water and Soil Conservation, 26(3), 247-263. doi: 10.22069/jwsc.2019.15189.3037 (in Persian)
Heim Jr, R. R. (2002). A review of twentieth-century drought indices used in the United States. Bulletin of the American Meteorological Society, 83(8), 1149-1166.
Heudorfer, B. & Stahl, K. (2017). Comparison of different threshold level methods for drought propagation analysis in Germany. Hydrology Research, 48(5), 1311-1326.
Hisdal, H., Tallaksen, L. M., Gauster, T., Bloomfield, J. P., Parry, S., Prudhomme, C., & Wanders, N. (2024). Hydrological drought characteristics. In Hydrological Drought (pp. 157-231). Elsevier.
Ho, S., Tian, L., Disse, M., & Tuo, Y. (2021). A new approach to quantify propagation time from meteorological to hydrological drought. Journal of Hydrology, 603, 127056.
Jahanbakhsh, S., Sari Sarraf, B., Ghafouri Roozbahani, A., & Rahimi Bandarabadi, S. (2016). The spatio-temporal analysis of low flow in Karkheh drainage basin, Watershed Engineering and Management, 8(1), 55-67. doi: 10.22092/ijwmse.2016.105974 (in Persian)
Li, Q., He, P., He, Y., Han, X., Zeng, T., Lu, G., & Wang, H. (2020). Investigation to the relation between meteorological drought and hydrological drought in the upper Shaying River Basin using wavelet analysis. Atmospheric Research, 234, 104743.
Lin, Q., Wu, Z., Zhang, Y., Peng, T., Chang, W., & Guo, J. (2023). Propagation from meteorological to hydrological drought and its application to drought prediction in the Xijiang River basin, South China. Journal of Hydrology, 617, 128889.
Ma, M., Zang, H., Wang, W., Cui, H., Sun, Y., & Cheng, Y. (2023). Copula-Based Severity–Duration–Frequency (SDF) Analysis of Streamflow Drought in the Source Area of the Yellow River, China. Water, 15(15), 2741.
Mukherjee, S., Mishra, A., & Trenberth, K. E. (2018). Climate change and drought: a perspective on drought indices. Current climate change reports, 4, 145-163.
Pandya, P. & Gontia, N. K. (2023). Development of drought severity–duration–frequency curves for identifying drought proneness in semi-arid regions. Journal of Water and Climate Change, 14(3), 824-842.
Pandya, P. & Gontia, N. K. (2023). Development of drought severity–duration–frequency curves for identifying drought proneness in semi-arid regions. Journal of Water and Climate Change, 14(3), 824-842.
Rivera, J. A., Otta, S., Lauro, C., & Zazulie, N. (2021). A decade of hydrological drought in Central-Western Argentina. Frontiers in Water, 3, 640544.
Sharma, T. C. & Panu, U. S. (2022). A Procedure for Estimating Drought Duration and Magnitude at the Uniform Cutoff Level of Streamflow: A Case of the Weekly Flows of Canadian Rivers. Hydrology, 9(6), 109.
Shin, J. Y., Kwon, H. H., Lee, J. H., & Kim, T. W. (2020). Probabilistic long‐term hydrological drought forecast using Bayesian networks and drought propagation. Meteorological Applications, 27(1), e1827.
Shiru, M. S., Shahid, S., Dewan, A., Chung, E. S., Alias, N., Ahmed, K., & Hassan, Q. K. (2020). Projection of meteorological droughts in Nigeria during growing seasons under climate change scenarios. Scientific reports, 10(1), 10107.
Sung, J. H. & Chung, E. S. (2014). Development of streamflow drought severity–duration–frequency curves using the threshold level method. Hydrology and Earth System Sciences, 18(9), 3341-3351.
Ullah, S., You, Q., Sachindra, D. A., Nowosad, M., Ullah, W., Bhatti, A. S., ... & Ali, A. (2022). Spatiotemporal changes in global aridity in terms of multiple aridity indices: An assessment based on the CRU data. Atmospheric Research, 268, 105998.
Vali, A. & Mehrabi, M. (2019). The Frequency Analysis of the Hydrological Drought in Doroodzan Dam Basin Based on Stream Flow Drought Index, Hydrogeomorphology, 6(19), 125-143 (in Persian)
Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359-392.
Vicente-Serrano, S. M., Quiring, S. M., Peña-Gallardo, M., Yuan, S., & Domínguez-Castro, F. (2020). A review of environmental droughts: Increased risk under global warming? Earth-Science Reviews, 201, 102953.
Yasa, I. W. (2024). Hydrological Drought Index Based on Streamflow Regime. Integrated Drought Management, 14, 371-396.
Zhang, Y. & Post, D. (2018). How good are hydrological models for gap-filling streamflow data? Hydrology and Earth System Sciences, 22(8), 4593-4604.
 
 
Volume 16, Issue 1
Spring & Summer
April 2024
Pages 187-205
  • Receive Date: 29 June 2024
  • Revise Date: 15 September 2024
  • Accept Date: 25 September 2024