ارزیابی تأثیر خط لولۀ نفت ری‌ـ ساری بر محیط زیست با به‌کارگیری پارامترهای ژئوتکنیک زیست‌محیطی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار بخش تحقیقات بیابان، مؤسسة تحقیقات جنگل‌ها و مراتع کشور، سازمان تحقیقات آموزش و ترویج کشاورزی، تهران

2 دانشیار گروه مهندسی ژئوتکنیک، دانشکدة مهندسی عمران، دانشگاه سمنان، سمنان

3 دانشجوی دکترای مهندسی ژئوتکنیک، دانشکدة مهندسی عمران، دانشگاه سمنان، سمنان‏

4 دکترای مهندسی ژئوتکنیک، دانشکدة مهندسی عمران، دانشگاه سمنان، سمنان

چکیده

آلودگی‌های نفتی در مسیر خطوط لولة انتقال فرآورده‌های نفتی پیامدی اجتناب‌ناپذیر از افزایش جمعیت و صنعتی شدن جوامع است که علاوه بر تأثیرات منفی زیست‌محیطی، مانند آلودگی سفره‌های آب زیرزمینی و خاک، باعث تغییراتی در خصوصیات ژئوتکنیکی خاک محل می‌شود. تغییرات خصوصیات مهندسی خاک‌ها می‌تواند به گسیختگی خاک و عملکرد نامطلوب خطوط انتقال منجر شود. ازین‌رو، در این پژوهش آثار خط لولة انتقال نفت شمال کشور بر محیط زیست،‏ با به‌کارگیری پارامتر‌های ژئوتکنیک در زمان بهره‌برداری، ارزیابی شد. روش مورد استفاده برای ‏ارزیابی ماتریس ایرانی بود. با تجزیه‌وتحلیل ماتریس ایرانی مشخص شد تعداد آثار میانگین جبری منفی در ستون برابر با 5 عدد و تعداد پیامدهای میانگین جبری منفی در ردیف برابر با 5 عدد است که در این بین تعداد پیامد‌های منفی کمتر از 1/3- در ستون مربوط به تغییر مسیر رودخانه، ایجاد بند، و ریسه کردن و در ردیف مربوط به لغزش و آلودگی خاک است.‏ نتایج مطالعات آزمایشگاهی جهت بررسی میزان اثر آلودگی خاک بر پارامتر‌های ژئوتکنیکی نشان داد مقاومت تک‌محوری نمونه‌ها 22 درصد ‏کاهش یافته ‏است. همچنین، تحلیل گسیختگی خاک به وسیلة نرم‌افزار PLAXIS نیز نشان داد با تغییر زاویة مسلح‌کننده‌ها از 20 به 23 درجة ضریب اطمینان شیروانی خاک به کمتر از حداقل ضریب اطمینان در آیین‌نامه کاهش می‌یابد. در نهایت، پیشنهاد شد جهت کاهش آثار و پیامد‌های منفی پروژه سعی شود تا حد امکان خطوط لوله از مناطق جنگلی و ‏شیب‌دار عبور داده نشود.

کلیدواژه‌ها

موضوعات


خسروی، الهه؛ محمدرضا صبور؛ حسن قاسم‌زاده؛ فاطمه کاهی (1390). «مطالعة آزمایشگاهی تأثیر گازوییل بر پارامترهای مقاومت برشی کائولینیت»، دومین سمپوزیوم بین‌المللی مهندسی محیط زیست، تهران.
رحمتی، علی (1391). «بررسی روند ارزیابی آثار محیط زیستی در ایران، چالش‌ها و راهکارها»، محیط زیست و توسعه، د 3، ش 5، صص 15 ـ 23.
روشن‌قیاس، سید محسن؛ محمدحسین باقری‌پور (1398). «تأثیر آلودگی نفت خام بر روی خصوصیات ژئوتکنیکی خاک رس کائولینیت در بستر راه»، مهندسی زیرساخت‌های حمل‌ونقل، (2)5، صص 101 ـ 112.
صالحی‌مؤید، مهدی؛ سعید کریمی (1386). «انجام مطالعة ارزیابی آثار محیط‌زیستی (EIA) خط انتقال گاز همدان به بیجار با تأکید بر استفاده از RS و GIS»، محیط‌شناسی، د 33، ش 41، صص 33 ـ 44.
صفایی، مهرداد؛ مریم فتاحی‌بندپی (1388). «بررسی و تحلیل زمین‌شناسی مهندسی و ژئوتکنیکی ‏زمین‌لغزش سایت پیشنهادی کارخانة کمپوست شهرستان ‏ساری، استان مازندران»، مهندسی و مدیریت آبخیز، د 1، ش 4، صص 266 ـ 274.
مرادی، سبحان؛ کاظم اسماعیلی؛ سعیدرضا خداشناس (1397). «بررسی توسعة زمانی آب‌شُستگی اطراف خطوط لوله با بهینه‎یابی موقعیت نصب پیگیبک‎لاین»، علوم و مهندسی آبیاری، د 41، ش 4، صص 173 ـ 187.
مرادی، سبحان؛ کاظم اسماعیلی؛ محمدرضا اکبرزاده؛ سعیدرضا خداشناس؛ کاظم اسماعیلی (1395). «بررسی تأثیر پیگیبک لاین بر آب‌شُستگی موضعی زیر خطوط لولة افق»، پژوهش‌های حفاظت آب و خاک، د 23، ش 6، صص 349 ـ 363.
مهدی‌زاده، محمدجواد؛ رضا غیاثی؛ کامبیز بهنیا (1395). «مطالعة تأثیر آلودگی نفتی بر نفوذپذیری و مقاومت برشی خاک‌های ماسه‌ای»، پژوهش نفت، د 26، ش 4، صص 45 ـ 56.
نعیمی، مریم؛ علی لشگری؛ عبدالحسین حداد (1397). «تأثیر پارامترهای ژئوتکنیکی بر ارزیابی آثار توسعه بر محیط زیست، مطالعة موردی: کارخانة سیمان آبیک»، پژوهش‌های محیط زیست، د 9، ش 18، صص 299 ـ 311.
نقشة 1:250000 ساری، سازمان زمین‌شناسی و اکتشافات معدنی کشور.
References
Al-Sanad, H. A., Eid, W. K., & Ismael, N. F. (1995). “Geotechnical properties of oil-contaminated Kuwaiti sand”, Journal of geotechnical engineering, 121(5), pp. 407-412.
ASTM D4318 (2010). Standard Test Method for Liquid Limit, Plastic Limit and Plasticity Index of Soil.
ASTM D854 (2010). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer.
Bao, L. C. X. Y. G. & Qingyuan, G. X. H. (2012). “Characteristics of Environmental Impact Assessment of Oil and Gas Transmission Pipeline Projects [J]”, Environmental Protection of Oil & Gas Fields, 1.
Canter, L. W. & Wood, C. (1996). Environmental impact assessment.
Karimi, S., Alavipoor, F. S., Foroughi, N., Nahavandchi, M., & Khakian, A. (2014). “Environmental Impact Assessment (EIA) of Gas Pipeline Transmission (Case Study: Duzduzan-Ahar)”, Current World Environment, 9(3), 686 p.
Khamehchiyan, M., Charkhabi, A. H., & Tajik, M. (2007). “Effects of crude oil contamination on geotechnical properties of clayey and sandy soils”, Engineering geology, 89(3-4), pp. 220-229.
Khosravi, E., Sabour, M.R., Ghasem zadeh, H., & Kahi, F. (2011). “Laboratory study of the effect of diesel fuel on kaolinite shear strength parameters”, 2nd International Symposium on Environmental Engineering, Tehran. ‎(in Persian)
Leknes, E. (2001). “The roles of EIA in the decision-making process”, Environmental Impact Assessment Review, 21(4), pp. 309-334.
Makhdoum, M. F. (2002). “Degradation model: a quantitative EIA instrument, acting as a Decision Support System (DSS) for environmental management”, Environmental management, 30(1), pp. 151-156.
Map 1: 250,000 Sari, Geological Survey of Iran. (in Persian)
Mehdizadeh, M.J., Ghiasi, R., & Behnia, K. (2016). “Study of the effect of oil pollution on the permeability and shear strength of sandy soils”, Oil Research, 26(4), pp. 45-56. (in Persian)‎
Melville, B. W. & Chiew, Y. M. (1999). “Time scale for local scour at bridge piers”, Journal of Hydraulic Engineering, 125(1), pp. 59-65.
Mohammadi, S. D. & Hosseinabadi, E. (2019). “Investigation of gasoil contamination effect on the erodibility of soils rich-lime around the Hamedan oil storage using rainfall simulator”, Journal of Engineering Geology, 13(2), pp. 289-316.
Moradi, S., Ismaili, K., Akbarzadeh, M.R., Khodashenas, S.R., & Ismaili, K. (2016). “Investigating the Impact of Pygmy Line on Local Disruption under Horizontal Pipelines”, Journal of Water and Soil Conservation Research, 23 (6), pp. 349-363. ‎(in Persian)
Moradi, S., Ismaili, K., & Khodashenas, S.R. (2018). “Investigating the temporal development of waterlogging around pipelines by optimizing the position of the piggyline installation”, Irrigation Science and Engineering, 41 (4), pp. 173-187. (in Persian)
Naeimi, M., Lashgari, A., & Haddad, A. (2019). “The effect of geotechnical parameters on environmental impact assessment, Case study: Abik Cement Factory”, Environmental Research, 9 (18), pp. 299-311. (in Persian)
Nazir, A. K. (2011). “Effect of motor oil contamination on geotechnical properties of over consolidated clay”, Alexandria Engineering Journal, 50(4), pp. 331-335.
Neba, N. E. & Ngeh, B. P. (2009). “Environmental assessment of the Chad-Cameroon oil and pipeline project in the Kribi region of Cameroon”, International NGO Journal, 4(5), pp. 225-235.
Petro Energy Information Network. Available from http://www.shana.ir/. Accessed 10th January 2017.
Rahman, Z. A., Umar, H., & Ahmad, N. (2010). “Geotechnical characteristics of oil-contaminated granitic and metasedimentary soils”, Asian Journal of Applied Sciences, 3(4), pp. 237-249.
Rahmati, A. (2012). “A Study of the Environmental Impact Assessment Process in Iran Challenges and Strategies”, Environment and Development, 3 (5), pp. 15-23. (in Persian)
Robert, K. W., Parris, T. M., & Leiserowitz, A. A. (2005). “What is sustainable development? Goals, indicators, values, and practice”, Environment: science and policy for sustainable development, 47(3), pp. 8-21.
Roshan-Ghiyas, S. M. & Bagheripour, M.H. (2019). “Impact of crude oil pollution on the geotechnical properties of kaolinite clay in the road bed”, Transportation Infrastructure Engineering, (2)5, pp. 101-112.
Safaie, M. & Fattahi Bandpay, M. (2009). “Analysis and evaluating the stability of the region for development of compost factory project in Lajim-Sari-Iran”, Journal of Watershed Engineering and Management, 1(4), pp. 266-274. (in Persian)
Salehi Moayad, M. & Karimi, S. (2007). “Environmental Impact Assessment (EIA) of gas pipeline transmission in Bijar with GIS and RS method”, International Journal of Environmental Research, 33 (41), pp. 33-44. (in Persian)
Sebastiani, M., Martı́n, E., Adrianza, D., Méndez, C., Villaró, M., & Saud, Y. (2001). “Linking impact assessment to an environmental management system. Case study: a downstream upgrading petroleum plant in Venezuela”, Environmental Impact Assessment Review, 21(2), pp. 137-168.
Shabarchin, O. & Tesfamariam, S. (2016). “Internal corrosion hazard assessment of oil & gas pipelines using Bayesian belief network model”, Journal of loss prevention in the process industries, 40, pp. 479-495.
Shackelford, C. D. (2014). “The ISSMGE Kerry Rowe Lecture: The role of diffusion in environmental geotechnics”, Canadian Geotechnical Journal, 51(11), pp. 1219-1242.
Shin, E. C. & Das, B. M. (2001). “Bearing capacity of unsaturated oil-contaminated sand”, International Journal of offshore and polar Engineering, 11(3), pp. 10-17.
Shin, E. C., Lee, J. B., & Das, B. M. (1999). “Bearing capacity of a model scale footing on crude oil-contaminated sand”, Geotechnical & Geological Engineering, 17(2), pp. 123-132.
Sim, Y. L. (2012). “Some geotechnical properties of palm biodiesel contaminated mining sand and weathered granite soil”, International Journal of Advanced Scientific Engineering and Technological Research, 1(4), pp. 1-8.
Vijayan, L. & Vijayan, V. S. (2013). “Conservation and Management of Wetland Birds in Rajasthan: Perspectives and Challenges”, in Faunal Heritage of Rajasthan, India (pp. 231-244). Springer, Cham.
Zhang, X., Yu, R., & Chen, J. (2020). “Abandonment Research and Environmental Impact Analysis for Retired Dong-Huang Pipelines”, in IOP Conference Series: Materials Science and Engineering, 735(1), IOP Publishing.